Copied to
clipboard

G = C3×C243C4order 192 = 26·3

Direct product of C3 and C243C4

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C3×C243C4, C247C12, C25.5C6, (C23×C6)⋊5C4, (C24×C6).1C2, C6.87C22≀C2, C24.29(C2×C6), C23.38(C3×D4), C22.29(C6×D4), C23.29(C2×C12), (C22×C12)⋊3C22, (C22×C6).153D4, (C23×C6).83C22, C23.56(C22×C6), (C22×C6).443C23, C22.28(C22×C12), (C2×C22⋊C4)⋊1C6, (C6×C22⋊C4)⋊5C2, (C22×C4)⋊2(C2×C6), C2.4(C6×C22⋊C4), (C2×C6)⋊7(C22⋊C4), C2.1(C3×C22≀C2), (C2×C6).596(C2×D4), C6.91(C2×C22⋊C4), C223(C3×C22⋊C4), (C22×C6).110(C2×C4), (C2×C6).215(C22×C4), SmallGroup(192,812)

Series: Derived Chief Lower central Upper central

C1C22 — C3×C243C4
C1C2C22C23C22×C6C22×C12C6×C22⋊C4 — C3×C243C4
C1C22 — C3×C243C4
C1C22×C6 — C3×C243C4

Generators and relations for C3×C243C4
 G = < a,b,c,d,e,f | a3=b2=c2=d2=e2=f4=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, fbf-1=bd=db, be=eb, cd=dc, fcf-1=ce=ec, de=ed, df=fd, ef=fe >

Subgroups: 898 in 506 conjugacy classes, 130 normal (10 characteristic)
C1, C2, C2, C3, C4, C22, C22, C22, C6, C6, C2×C4, C23, C23, C23, C12, C2×C6, C2×C6, C2×C6, C22⋊C4, C22×C4, C24, C24, C2×C12, C22×C6, C22×C6, C22×C6, C2×C22⋊C4, C25, C3×C22⋊C4, C22×C12, C23×C6, C23×C6, C243C4, C6×C22⋊C4, C24×C6, C3×C243C4
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, D4, C23, C12, C2×C6, C22⋊C4, C22×C4, C2×D4, C2×C12, C3×D4, C22×C6, C2×C22⋊C4, C22≀C2, C3×C22⋊C4, C22×C12, C6×D4, C243C4, C6×C22⋊C4, C3×C22≀C2, C3×C243C4

Smallest permutation representation of C3×C243C4
On 48 points
Generators in S48
(1 6 33)(2 7 34)(3 8 35)(4 5 36)(9 31 13)(10 32 14)(11 29 15)(12 30 16)(17 27 21)(18 28 22)(19 25 23)(20 26 24)(37 45 41)(38 46 42)(39 47 43)(40 48 44)
(2 10)(4 12)(5 30)(7 32)(14 34)(16 36)(18 38)(20 40)(22 42)(24 44)(26 48)(28 46)
(2 40)(4 38)(5 46)(7 48)(10 20)(12 18)(14 24)(16 22)(26 32)(28 30)(34 44)(36 42)
(1 9)(2 10)(3 11)(4 12)(5 30)(6 31)(7 32)(8 29)(13 33)(14 34)(15 35)(16 36)(17 37)(18 38)(19 39)(20 40)(21 41)(22 42)(23 43)(24 44)(25 47)(26 48)(27 45)(28 46)
(1 39)(2 40)(3 37)(4 38)(5 46)(6 47)(7 48)(8 45)(9 19)(10 20)(11 17)(12 18)(13 23)(14 24)(15 21)(16 22)(25 31)(26 32)(27 29)(28 30)(33 43)(34 44)(35 41)(36 42)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)

G:=sub<Sym(48)| (1,6,33)(2,7,34)(3,8,35)(4,5,36)(9,31,13)(10,32,14)(11,29,15)(12,30,16)(17,27,21)(18,28,22)(19,25,23)(20,26,24)(37,45,41)(38,46,42)(39,47,43)(40,48,44), (2,10)(4,12)(5,30)(7,32)(14,34)(16,36)(18,38)(20,40)(22,42)(24,44)(26,48)(28,46), (2,40)(4,38)(5,46)(7,48)(10,20)(12,18)(14,24)(16,22)(26,32)(28,30)(34,44)(36,42), (1,9)(2,10)(3,11)(4,12)(5,30)(6,31)(7,32)(8,29)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40)(21,41)(22,42)(23,43)(24,44)(25,47)(26,48)(27,45)(28,46), (1,39)(2,40)(3,37)(4,38)(5,46)(6,47)(7,48)(8,45)(9,19)(10,20)(11,17)(12,18)(13,23)(14,24)(15,21)(16,22)(25,31)(26,32)(27,29)(28,30)(33,43)(34,44)(35,41)(36,42), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)>;

G:=Group( (1,6,33)(2,7,34)(3,8,35)(4,5,36)(9,31,13)(10,32,14)(11,29,15)(12,30,16)(17,27,21)(18,28,22)(19,25,23)(20,26,24)(37,45,41)(38,46,42)(39,47,43)(40,48,44), (2,10)(4,12)(5,30)(7,32)(14,34)(16,36)(18,38)(20,40)(22,42)(24,44)(26,48)(28,46), (2,40)(4,38)(5,46)(7,48)(10,20)(12,18)(14,24)(16,22)(26,32)(28,30)(34,44)(36,42), (1,9)(2,10)(3,11)(4,12)(5,30)(6,31)(7,32)(8,29)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40)(21,41)(22,42)(23,43)(24,44)(25,47)(26,48)(27,45)(28,46), (1,39)(2,40)(3,37)(4,38)(5,46)(6,47)(7,48)(8,45)(9,19)(10,20)(11,17)(12,18)(13,23)(14,24)(15,21)(16,22)(25,31)(26,32)(27,29)(28,30)(33,43)(34,44)(35,41)(36,42), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48) );

G=PermutationGroup([[(1,6,33),(2,7,34),(3,8,35),(4,5,36),(9,31,13),(10,32,14),(11,29,15),(12,30,16),(17,27,21),(18,28,22),(19,25,23),(20,26,24),(37,45,41),(38,46,42),(39,47,43),(40,48,44)], [(2,10),(4,12),(5,30),(7,32),(14,34),(16,36),(18,38),(20,40),(22,42),(24,44),(26,48),(28,46)], [(2,40),(4,38),(5,46),(7,48),(10,20),(12,18),(14,24),(16,22),(26,32),(28,30),(34,44),(36,42)], [(1,9),(2,10),(3,11),(4,12),(5,30),(6,31),(7,32),(8,29),(13,33),(14,34),(15,35),(16,36),(17,37),(18,38),(19,39),(20,40),(21,41),(22,42),(23,43),(24,44),(25,47),(26,48),(27,45),(28,46)], [(1,39),(2,40),(3,37),(4,38),(5,46),(6,47),(7,48),(8,45),(9,19),(10,20),(11,17),(12,18),(13,23),(14,24),(15,21),(16,22),(25,31),(26,32),(27,29),(28,30),(33,43),(34,44),(35,41),(36,42)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)]])

84 conjugacy classes

class 1 2A···2G2H···2S3A3B4A···4H6A···6N6O···6AL12A···12P
order12···22···2334···46···66···612···12
size11···12···2114···41···12···24···4

84 irreducible representations

dim1111111122
type++++
imageC1C2C2C3C4C6C6C12D4C3×D4
kernelC3×C243C4C6×C22⋊C4C24×C6C243C4C23×C6C2×C22⋊C4C25C24C22×C6C23
# reps16128122161224

Matrix representation of C3×C243C4 in GL6(𝔽13)

100000
010000
009000
000900
000090
000009
,
100000
0120000
001000
0001200
000010
000001
,
100000
010000
001000
000100
000010
0000112
,
1200000
0120000
0012000
0001200
000010
000001
,
100000
010000
001000
000100
0000120
0000012
,
010000
100000
000100
0012000
0000111
0000012

G:=sub<GL(6,GF(13))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,9,0,0,0,0,0,0,9,0,0,0,0,0,0,9,0,0,0,0,0,0,9],[1,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,12],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,11,12] >;

C3×C243C4 in GAP, Magma, Sage, TeX

C_3\times C_2^4\rtimes_3C_4
% in TeX

G:=Group("C3xC2^4:3C4");
// GroupNames label

G:=SmallGroup(192,812);
// by ID

G=gap.SmallGroup(192,812);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-2,672,365,1094]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^3=b^2=c^2=d^2=e^2=f^4=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,f*b*f^-1=b*d=d*b,b*e=e*b,c*d=d*c,f*c*f^-1=c*e=e*c,d*e=e*d,d*f=f*d,e*f=f*e>;
// generators/relations

׿
×
𝔽